Motivation

Synthetic data refers to artificially generated information that mimics real-world data in structure, distribution, and relationships but does not directly derive from actual observations. It is created using algorithms, simulations, or statistical models to replicate the characteristics of real data. Synthetic data can take various forms, including tabular data, images, audio, video, and text. In this lesson, we focus on common methods for generating tabular synthetic data useful for machine learning and data analytics.

Common Methods

There are several methods for generating synthetic data, each tailored to specific types of datasets or features within a dataset:

  1. Statistical Models: Techniques such as Monte Carlo simulations and parametric models use statistical distributions to produce data. These methods are effective for creating structured, tabular data.

  2. Generative Models: Deep learning models like Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffusion models can produce high-quality synthetic data, especially for images and complex data.

  3. Rule-Based Systems: Defined rules and domain-specific knowledge can generate data for specific use cases, such as synthetic test cases in software development or visits to a website.

  4. Agent-Based Simulations: In scenarios like traffic systems or financial markets, agents simulate interactions based on pre-defined rules, generating synthetic data that reflects real-world dynamics.

  5. Noise and Augmentation: Adding noise or transformations to existing datasets creates augmented data, often used in machine learning to enhance model robustness.

Synthetic datasets offer several important advantages over (often hard to get) datasets:

  1. Privacy Preservation: Synthetic data allows organizations to share and analyze data without exposing sensitive or personally identifiable information.

  2. Data Accessibility: When real-world data is scarce or unavailable, synthetic data can fill gaps, providing researchers and developers with data to train and test models.

  3. Scalability: Synthetic data can be generated at scale, enabling the creation of large datasets for applications like machine learning and simulation.

  4. Control and Diversity: Unlike real data, synthetic data can be tailored to include specific features, distributions, or edge cases, making it ideal for testing under controlled conditions.

  5. Cost Efficiency: Collecting real-world data is often expensive and time-consuming. Synthetic data generation reduces these costs while maintaining usability.

Limitations

Of course, there are some significant drawbacks to using synthetically generated data:

  1. Limited Realism: Poorly generated synthetic data may not accurately represent real-world complexities, leading to biased or unreliable results. Predictive models trained on synthetic data may not perform well when deployed. Machine learning models trained exclusively on synthetic data might overfit to its patterns and perform poorly on real-world data.

  2. Validation Challenges: Validating synthetic data against real-world datasets to ensure it maintains statistical and practical relevance is often difficult.

  3. Regulatory Concerns: In highly regulated industries, synthetic data might not meet compliance standards, limiting its adoption.

Despite its drawbacks, synthetic data is preferable for research, development, and testing and can be used across various industries. While it offers significant advantages, its drawbacks highlight the importance of careful validation and alignment with real-world datasets. The growing ecosystem of tools continues to simplify and enhance the generation of high-quality synthetic data for diverse applications.

Summary

Synthetic data is artificially generated information that mimics real-world data in structure and characteristics. It is created using statistical models, generative algorithms like GANs, rule-based systems, and simulations. Synthetic data is particularly valuable for preserving privacy, improving data accessibility, and reducing the costs of data collection. It is scalable, customizable, and useful for training machine learning models, especially when real data is scarce. It is essential to keep in mind that synthetic data has limitations, including reduced realism, risks of overfitting, validation challenges, and potential regulatory issues.


Files & Resources

All Files for Lesson 3.971

References

Granville, V. (2024). Synthetic Data and Generative AI. Elsevier.

Singh, J. (2021). The Rise of Synthetic Data: Enhancing AI and Machine Learning Model Training to Address Data Scarcity and Mitigate Privacy Risks. Journal of Artificial Intelligence Research and Applications, 1(2), 292-332.

Hansen, L., Seedat, N., van der Schaar, M., & Petrovic, A. (2023). Reimagining synthetic tabular data generation through data-centric AI: A comprehensive benchmark. Advances in Neural Information Processing Systems, 36, 33781-33823.

Errata

None collected yet. Let us know.

LS0tCnRpdGxlOiAiU3ludGhldGljIERhdGEgRW5naW5lZXJpbmcgIgpwYXJhbXM6CiAgY2F0ZWdvcnk6IDMKICBzdGFja3M6IDAKICBudW1iZXI6IDk3MQogIHRpbWU6IDEwCiAgbGV2ZWw6IGJlZ2lubmVyCiAgdGFnczogZXZhbHVhdGlvbixtYWNoaW5lIGxlYXJuaW5nLHJlZ3Jlc3Npb24KICBkZXNjcmlwdGlvbjogIlByZXNlbnRzIGEgd29ya2VkIGV4YW1wbGUgb2YgZW5naW5lZXJpbmcgYSBzeW50aGV0aWMgZGF0YQogICAgICAgICAgICAgICAgc2V0IHVzZWZ1bCBmb3IgcmVncmVzc2lvbiwgZGF0YSBhbmFseXRpY3MsIGFzc29jaWF0aW9uCiAgICAgICAgICAgICAgICBydWxlcywgYW5kIGRhdGEgbWluaW5nLiBDb250YWlucyBjb25maWd1cmFibGUgcGFyYW1ldGVycy4iCmRhdGU6ICI8c21hbGw+YHIgU3lzLkRhdGUoKWA8L3NtYWxsPiIKYXV0aG9yOiAiPHNtYWxsPk1hcnRpbiBTY2hlZGxiYXVlcjwvc21hbGw+IgplbWFpbDogIm0uc2NoZWRsYmF1ZXJAbmV1LmVkdSIKYWZmaWxpdGF0aW9uOiAiTm9ydGhlYXN0ZXJuIFVuaXZlcnNpdHkiCm91dHB1dDogCiAgYm9va2Rvd246Omh0bWxfZG9jdW1lbnQyOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvbGxhcHNlZDogZmFsc2UKICAgIG51bWJlcl9zZWN0aW9uczogZmFsc2UKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIHRoZW1lOiBzcGFjZWxhYgogICAgaGlnaGxpZ2h0OiB0YW5nbwotLS0KCi0tLQp0aXRsZTogIjxzbWFsbD5gciBwYXJhbXMkY2F0ZWdvcnlgLmByIHBhcmFtcyRudW1iZXJgPC9zbWFsbD48YnIvPjxzcGFuIHN0eWxlPSdjb2xvcjogIzJFNDA1MzsgZm9udC1zaXplOiAwLjllbSc+YHIgcm1hcmtkb3duOjptZXRhZGF0YSR0aXRsZWA8L3NwYW4+IgotLS0KCmBgYHtyIGNvZGU9eGZ1bjo6cmVhZF91dGY4KHBhc3RlMChoZXJlOjpoZXJlKCksJy9SL19pbnNlcnQyREIuUicpKSwgaW5jbHVkZSA9IEZBTFNFfQpgYGAKCiMjIE1vdGl2YXRpb24KClN5bnRoZXRpYyBkYXRhIHJlZmVycyB0byBhcnRpZmljaWFsbHkgZ2VuZXJhdGVkIGluZm9ybWF0aW9uIHRoYXQgbWltaWNzIHJlYWwtd29ybGQgZGF0YSBpbiBzdHJ1Y3R1cmUsIGRpc3RyaWJ1dGlvbiwgYW5kIHJlbGF0aW9uc2hpcHMgYnV0IGRvZXMgbm90IGRpcmVjdGx5IGRlcml2ZSBmcm9tIGFjdHVhbCBvYnNlcnZhdGlvbnMuIEl0IGlzIGNyZWF0ZWQgdXNpbmcgYWxnb3JpdGhtcywgc2ltdWxhdGlvbnMsIG9yIHN0YXRpc3RpY2FsIG1vZGVscyB0byByZXBsaWNhdGUgdGhlIGNoYXJhY3RlcmlzdGljcyBvZiByZWFsIGRhdGEuIFN5bnRoZXRpYyBkYXRhIGNhbiB0YWtlIHZhcmlvdXMgZm9ybXMsIGluY2x1ZGluZyB0YWJ1bGFyIGRhdGEsIGltYWdlcywgYXVkaW8sIHZpZGVvLCBhbmQgdGV4dC4gSW4gdGhpcyBsZXNzb24sIHdlIGZvY3VzIG9uIGNvbW1vbiBtZXRob2RzIGZvciBnZW5lcmF0aW5nIHRhYnVsYXIgc3ludGhldGljIGRhdGEgdXNlZnVsIGZvciBtYWNoaW5lIGxlYXJuaW5nIGFuZCBkYXRhIGFuYWx5dGljcy4KCiMjIENvbW1vbiBNZXRob2RzCgpUaGVyZSBhcmUgc2V2ZXJhbCBtZXRob2RzIGZvciBnZW5lcmF0aW5nIHN5bnRoZXRpYyBkYXRhLCBlYWNoIHRhaWxvcmVkIHRvIHNwZWNpZmljIHR5cGVzIG9mIGRhdGFzZXRzIG9yIGZlYXR1cmVzIHdpdGhpbiBhIGRhdGFzZXQ6CgoxLiAgKipTdGF0aXN0aWNhbCBNb2RlbHMqKjogVGVjaG5pcXVlcyBzdWNoIGFzIE1vbnRlIENhcmxvIHNpbXVsYXRpb25zIGFuZCBwYXJhbWV0cmljIG1vZGVscyB1c2Ugc3RhdGlzdGljYWwgZGlzdHJpYnV0aW9ucyB0byBwcm9kdWNlIGRhdGEuIFRoZXNlIG1ldGhvZHMgYXJlIGVmZmVjdGl2ZSBmb3IgY3JlYXRpbmcgc3RydWN0dXJlZCwgdGFidWxhciBkYXRhLgoKMi4gICoqR2VuZXJhdGl2ZSBNb2RlbHMqKjogRGVlcCBsZWFybmluZyBtb2RlbHMgbGlrZSBHZW5lcmF0aXZlIEFkdmVyc2FyaWFsIE5ldHdvcmtzIChHQU5zKSwgVmFyaWF0aW9uYWwgQXV0b2VuY29kZXJzIChWQUVzKSwgYW5kIGRpZmZ1c2lvbiBtb2RlbHMgY2FuIHByb2R1Y2UgaGlnaC1xdWFsaXR5IHN5bnRoZXRpYyBkYXRhLCBlc3BlY2lhbGx5IGZvciBpbWFnZXMgYW5kIGNvbXBsZXggZGF0YS4KCjMuICAqKlJ1bGUtQmFzZWQgU3lzdGVtcyoqOiBEZWZpbmVkIHJ1bGVzIGFuZCBkb21haW4tc3BlY2lmaWMga25vd2xlZGdlIGNhbiBnZW5lcmF0ZSBkYXRhIGZvciBzcGVjaWZpYyB1c2UgY2FzZXMsIHN1Y2ggYXMgc3ludGhldGljIHRlc3QgY2FzZXMgaW4gc29mdHdhcmUgZGV2ZWxvcG1lbnQgb3IgdmlzaXRzIHRvIGEgd2Vic2l0ZS4KCjQuICAqKkFnZW50LUJhc2VkIFNpbXVsYXRpb25zKio6IEluIHNjZW5hcmlvcyBsaWtlIHRyYWZmaWMgc3lzdGVtcyBvciBmaW5hbmNpYWwgbWFya2V0cywgYWdlbnRzIHNpbXVsYXRlIGludGVyYWN0aW9ucyBiYXNlZCBvbiBwcmUtZGVmaW5lZCBydWxlcywgZ2VuZXJhdGluZyBzeW50aGV0aWMgZGF0YSB0aGF0IHJlZmxlY3RzIHJlYWwtd29ybGQgZHluYW1pY3MuCgo1LiAgKipOb2lzZSBhbmQgQXVnbWVudGF0aW9uKio6IEFkZGluZyBub2lzZSBvciB0cmFuc2Zvcm1hdGlvbnMgdG8gZXhpc3RpbmcgZGF0YXNldHMgY3JlYXRlcyBhdWdtZW50ZWQgZGF0YSwgb2Z0ZW4gdXNlZCBpbiBtYWNoaW5lIGxlYXJuaW5nIHRvIGVuaGFuY2UgbW9kZWwgcm9idXN0bmVzcy4KClN5bnRoZXRpYyBkYXRhc2V0cyBvZmZlciBzZXZlcmFsIGltcG9ydGFudCBhZHZhbnRhZ2VzIG92ZXIgKG9mdGVuIGhhcmQgdG8gZ2V0KSBkYXRhc2V0czoKCjEuICAqKlByaXZhY3kgUHJlc2VydmF0aW9uKio6IFN5bnRoZXRpYyBkYXRhIGFsbG93cyBvcmdhbml6YXRpb25zIHRvIHNoYXJlIGFuZCBhbmFseXplIGRhdGEgd2l0aG91dCBleHBvc2luZyBzZW5zaXRpdmUgb3IgcGVyc29uYWxseSBpZGVudGlmaWFibGUgaW5mb3JtYXRpb24uCgoyLiAgKipEYXRhIEFjY2Vzc2liaWxpdHkqKjogV2hlbiByZWFsLXdvcmxkIGRhdGEgaXMgc2NhcmNlIG9yIHVuYXZhaWxhYmxlLCBzeW50aGV0aWMgZGF0YSBjYW4gZmlsbCBnYXBzLCBwcm92aWRpbmcgcmVzZWFyY2hlcnMgYW5kIGRldmVsb3BlcnMgd2l0aCBkYXRhIHRvIHRyYWluIGFuZCB0ZXN0IG1vZGVscy4KCjMuICAqKlNjYWxhYmlsaXR5Kio6IFN5bnRoZXRpYyBkYXRhIGNhbiBiZSBnZW5lcmF0ZWQgYXQgc2NhbGUsIGVuYWJsaW5nIHRoZSBjcmVhdGlvbiBvZiBsYXJnZSBkYXRhc2V0cyBmb3IgYXBwbGljYXRpb25zIGxpa2UgbWFjaGluZSBsZWFybmluZyBhbmQgc2ltdWxhdGlvbi4KCjQuICAqKkNvbnRyb2wgYW5kIERpdmVyc2l0eSoqOiBVbmxpa2UgcmVhbCBkYXRhLCBzeW50aGV0aWMgZGF0YSBjYW4gYmUgdGFpbG9yZWQgdG8gaW5jbHVkZSBzcGVjaWZpYyBmZWF0dXJlcywgZGlzdHJpYnV0aW9ucywgb3IgZWRnZSBjYXNlcywgbWFraW5nIGl0IGlkZWFsIGZvciB0ZXN0aW5nIHVuZGVyIGNvbnRyb2xsZWQgY29uZGl0aW9ucy4KCjUuICAqKkNvc3QgRWZmaWNpZW5jeSoqOiBDb2xsZWN0aW5nIHJlYWwtd29ybGQgZGF0YSBpcyBvZnRlbiBleHBlbnNpdmUgYW5kIHRpbWUtY29uc3VtaW5nLiBTeW50aGV0aWMgZGF0YSBnZW5lcmF0aW9uIHJlZHVjZXMgdGhlc2UgY29zdHMgd2hpbGUgbWFpbnRhaW5pbmcgdXNhYmlsaXR5LgoKIyMgTGltaXRhdGlvbnMKCk9mIGNvdXJzZSwgdGhlcmUgYXJlIHNvbWUgc2lnbmlmaWNhbnQgZHJhd2JhY2tzIHRvIHVzaW5nIHN5bnRoZXRpY2FsbHkgZ2VuZXJhdGVkIGRhdGE6CgoxLiAgKipMaW1pdGVkIFJlYWxpc20qKjogUG9vcmx5IGdlbmVyYXRlZCBzeW50aGV0aWMgZGF0YSBtYXkgbm90IGFjY3VyYXRlbHkgcmVwcmVzZW50IHJlYWwtd29ybGQgY29tcGxleGl0aWVzLCBsZWFkaW5nIHRvIGJpYXNlZCBvciB1bnJlbGlhYmxlIHJlc3VsdHMuIFByZWRpY3RpdmUgbW9kZWxzIHRyYWluZWQgb24gc3ludGhldGljIGRhdGEgbWF5IG5vdCBwZXJmb3JtIHdlbGwgd2hlbiBkZXBsb3llZC4gTWFjaGluZSBsZWFybmluZyBtb2RlbHMgdHJhaW5lZCBleGNsdXNpdmVseSBvbiBzeW50aGV0aWMgZGF0YSBtaWdodCBvdmVyZml0IHRvIGl0cyBwYXR0ZXJucyBhbmQgcGVyZm9ybSBwb29ybHkgb24gcmVhbC13b3JsZCBkYXRhLgoKMi4gICoqVmFsaWRhdGlvbiBDaGFsbGVuZ2VzKio6IFZhbGlkYXRpbmcgc3ludGhldGljIGRhdGEgYWdhaW5zdCByZWFsLXdvcmxkIGRhdGFzZXRzIHRvIGVuc3VyZSBpdCBtYWludGFpbnMgc3RhdGlzdGljYWwgYW5kIHByYWN0aWNhbCByZWxldmFuY2UgaXMgb2Z0ZW4gZGlmZmljdWx0LgoKMy4gICoqUmVndWxhdG9yeSBDb25jZXJucyoqOiBJbiBoaWdobHkgcmVndWxhdGVkIGluZHVzdHJpZXMsIHN5bnRoZXRpYyBkYXRhIG1pZ2h0IG5vdCBtZWV0IGNvbXBsaWFuY2Ugc3RhbmRhcmRzLCBsaW1pdGluZyBpdHMgYWRvcHRpb24uCgpEZXNwaXRlIGl0cyBkcmF3YmFja3MsIHN5bnRoZXRpYyBkYXRhIGlzIHByZWZlcmFibGUgZm9yIHJlc2VhcmNoLCBkZXZlbG9wbWVudCwgYW5kIHRlc3RpbmcgYW5kIGNhbiBiZSB1c2VkIGFjcm9zcyB2YXJpb3VzIGluZHVzdHJpZXMuIFdoaWxlIGl0IG9mZmVycyBzaWduaWZpY2FudCBhZHZhbnRhZ2VzLCBpdHMgZHJhd2JhY2tzIGhpZ2hsaWdodCB0aGUgaW1wb3J0YW5jZSBvZiBjYXJlZnVsIHZhbGlkYXRpb24gYW5kIGFsaWdubWVudCB3aXRoIHJlYWwtd29ybGQgZGF0YXNldHMuIFRoZSBncm93aW5nIGVjb3N5c3RlbSBvZiB0b29scyBjb250aW51ZXMgdG8gc2ltcGxpZnkgYW5kIGVuaGFuY2UgdGhlIGdlbmVyYXRpb24gb2YgaGlnaC1xdWFsaXR5IHN5bnRoZXRpYyBkYXRhIGZvciBkaXZlcnNlIGFwcGxpY2F0aW9ucy4KCiMjIFN1bW1hcnkKClN5bnRoZXRpYyBkYXRhIGlzIGFydGlmaWNpYWxseSBnZW5lcmF0ZWQgaW5mb3JtYXRpb24gdGhhdCBtaW1pY3MgcmVhbC13b3JsZCBkYXRhIGluIHN0cnVjdHVyZSBhbmQgY2hhcmFjdGVyaXN0aWNzLiBJdCBpcyBjcmVhdGVkIHVzaW5nIHN0YXRpc3RpY2FsIG1vZGVscywgZ2VuZXJhdGl2ZSBhbGdvcml0aG1zIGxpa2UgR0FOcywgcnVsZS1iYXNlZCBzeXN0ZW1zLCBhbmQgc2ltdWxhdGlvbnMuIFN5bnRoZXRpYyBkYXRhIGlzIHBhcnRpY3VsYXJseSB2YWx1YWJsZSBmb3IgcHJlc2VydmluZyBwcml2YWN5LCBpbXByb3ZpbmcgZGF0YSBhY2Nlc3NpYmlsaXR5LCBhbmQgcmVkdWNpbmcgdGhlIGNvc3RzIG9mIGRhdGEgY29sbGVjdGlvbi4gSXQgaXMgc2NhbGFibGUsIGN1c3RvbWl6YWJsZSwgYW5kIHVzZWZ1bCBmb3IgdHJhaW5pbmcgbWFjaGluZSBsZWFybmluZyBtb2RlbHMsIGVzcGVjaWFsbHkgd2hlbiByZWFsIGRhdGEgaXMgc2NhcmNlLiBJdCBpcyBlc3NlbnRpYWwgdG8ga2VlcCBpbiBtaW5kIHRoYXQgc3ludGhldGljIGRhdGEgaGFzIGxpbWl0YXRpb25zLCBpbmNsdWRpbmcgcmVkdWNlZCByZWFsaXNtLCByaXNrcyBvZiBvdmVyZml0dGluZywgdmFsaWRhdGlvbiBjaGFsbGVuZ2VzLCBhbmQgcG90ZW50aWFsIHJlZ3VsYXRvcnkgaXNzdWVzLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCgojIyBGaWxlcyAmIFJlc291cmNlcwoKYGBge3IgemlwRmlsZXMsIGVjaG89RkFMU0V9CnppcE5hbWUgPSBzcHJpbnRmKCJMZXNzb25GaWxlcy0lcy0lcy56aXAiLCAKICAgICAgICAgICAgICAgICBwYXJhbXMkY2F0ZWdvcnksCiAgICAgICAgICAgICAgICAgcGFyYW1zJG51bWJlcikKCnRleHRBTGluayA9IHBhc3RlMCgiQWxsIEZpbGVzIGZvciBMZXNzb24gIiwgCiAgICAgICAgICAgICAgIHBhcmFtcyRjYXRlZ29yeSwiLiIscGFyYW1zJG51bWJlcikKCiMgZG93bmxvYWRGaWxlc0xpbmsoKSBpcyBpbmNsdWRlZCBmcm9tIF9pbnNlcnQyREIuUgprbml0cjo6cmF3X2h0bWwoZG93bmxvYWRGaWxlc0xpbmsoIi4iLCB6aXBOYW1lLCB0ZXh0QUxpbmspKQpgYGAKCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKIyMgUmVmZXJlbmNlcwoKR3JhbnZpbGxlLCBWLiAoMjAyNCkuICpTeW50aGV0aWMgRGF0YSBhbmQgR2VuZXJhdGl2ZSBBSSouIEVsc2V2aWVyLgoKU2luZ2gsIEouICgyMDIxKS4gVGhlIFJpc2Ugb2YgU3ludGhldGljIERhdGE6IEVuaGFuY2luZyBBSSBhbmQgTWFjaGluZSBMZWFybmluZyBNb2RlbCBUcmFpbmluZyB0byBBZGRyZXNzIERhdGEgU2NhcmNpdHkgYW5kIE1pdGlnYXRlIFByaXZhY3kgUmlza3MuICpKb3VybmFsIG9mIEFydGlmaWNpYWwgSW50ZWxsaWdlbmNlIFJlc2VhcmNoIGFuZCBBcHBsaWNhdGlvbnMqLCAxKDIpLCAyOTItMzMyLgoKSGFuc2VuLCBMLiwgU2VlZGF0LCBOLiwgdmFuIGRlciBTY2hhYXIsIE0uLCAmIFBldHJvdmljLCBBLiAoMjAyMykuIFJlaW1hZ2luaW5nIHN5bnRoZXRpYyB0YWJ1bGFyIGRhdGEgZ2VuZXJhdGlvbiB0aHJvdWdoIGRhdGEtY2VudHJpYyBBSTogQSBjb21wcmVoZW5zaXZlIGJlbmNobWFyay4gKkFkdmFuY2VzIGluIE5ldXJhbCBJbmZvcm1hdGlvbiBQcm9jZXNzaW5nIFN5c3RlbXMqLCAzNiwgMzM3ODEtMzM4MjMuCgojIyBFcnJhdGEKCk5vbmUgY29sbGVjdGVkIHlldC4gW0xldCB1cyBrbm93XShodHRwczovL2Zvcm0uam90Zm9ybS5jb20vMjEyMTg3MDcyNzg0MTU3KXt0YXJnZXQ9Il9ibGFuayJ9Lgo=