
© Copyright IBM Corporation 2004 Trademarks
Get started with XPath Page 1 of 19

Get started with XPath
Learn the basics

Bertrand Portier May 11, 2004

This tutorial introduces and covers most aspects of the XML Path Language, or XPath. It is
aimed at people who do not know XPath or who want a refresher. If you plan to use XSLT, you
should take this tutorial first. You will learn: what XPath is; the syntax and semantics of the
XPath language; how to use XPath location paths; how to use XPath expressions; how to use
XPath functions; and how XPath relates to XSLT.

Tutorial introduction
Should I take this tutorial?
This tutorial introduces and covers most aspects of the XML Path Language, or XPath. It is aimed
at people who do not know XPath or want a refresher. If you plan to use XSLT, you should take this
tutorial first. You will learn:

• What XPath is
• The syntax and semantics of the XPath language
• How to use XPath location paths
• How to use XPath expressions
• How to use XPath functions
• How XPath relates to XSLT

XPath is a W3C standard. This tutorial focuses on version 1.0. Refer to Tutorial wrap-up for
information on the upcoming XPath 2.0.

Prerequisites
This tutorial assumes basic knowledge of XML. For example, you should know what elements,
attributes, and values are. If you aren't familiar with these, I recommend you first take the
"Introduction to XML" tutorial, listed in Related topics.

You will also need a text editor and a Web browser. Although it's not a prerequisite, you may also
find it useful to have an XML editor, as it will include an XPath evaluator that allows you to test the
XPath expressions used here.

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/
#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 2 of 19

XML-related technologies
Listed below are the technologies mentioned in this tutorial. Skip this if you are already familiar
with XML-related technologies. All of these technologies are W3C specifications.

• XML is the eXtensible Markup Language. It is the basis for the other technologies listed below
(and many more), and is very widely used in the industry because of its extensibility.

• XML Schema, sometimes referred to as XSD, defines the rules for the data contained in XML
documents.

• XSL (eXtensible Stylesheet Language) and XSLT (XSL transformations) are used to present
XML documents in a different format -- for example, HTML.

• XPath -- hmm... that's a good question. ;-)

About the example used in this tutorial
Overview
In this tutorial, you will learn XPath by writing the presentation layer of an auction site application.
You will specify the XPath expressions inside an XSLT stylesheet that's used to present XML
documents containing auction items. All the files used in this tutorial are in the zip file, x-
xpathTutorial.zip (see Related topics for a link), including:

• XPath/AuctionItemList.xsd - an XML Schema document that defines the data format of the
auction items.

• XPath/AuctionItemList.xml - an XML file that contains a list of auction items; it is the data for
the example.

• XPath/AuctionItemSummary-Base.xsl - an XSLT stylesheet that defines what a Web
browser will display when it loads AuctionItemList.xml; it contains the data's presentation
rules.

• XPath/AuctionItemSummary-Section5.xsl - the solution in Location paths .
• XPath/AuctionItemSummary-Section6.xsl - the solution in Expressions .
• XPath/AuctionItemSummary-Section7.xsl - the solution in Function library .

AuctionItemList.xsd
AuctionItemList.xsd contains the business rules for the auction item and auction items list data,
described in XML Schema language:

An auction item list has only one root element called list of type auctionItemList.

An auctionItemList is composed of zero or more item elements of type auctionItem.

An auctionItem is composed of five elements (bidIncrement, currentPrice of type price,
endOfAuction, description, and sellerId) and one attribute group of type itemAttributes.

A price is a positive decimal value with two decimal places and must have a currency attribute of
type customCurrency associated with it.

A customCurrency must be one of USD, GBP, or EUR.

#
#
#

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 3 of 19

An itemAttributes group must contain one string attribute type, one string attribute id, and one
boolean attribute private, that is false by default.

A type attribute must be one of the following: Unknown, Traditional, BidOnly, FixedPrice, or
IndividualOffer.

If you want to learn more about XML Schema, see Related topics for more developerWorks
articles and tutorials.

AuctionItemList.xml

AuctionItemList.xml conforms to the XML schema defined in AuctionItemList.xsd and contains
a list of type auctionItemList. This list contains seven items. The xsi:schemaLocation attribute
of the list root element indicates that this XML document must conform to the AuctionItemList.xsd
schema.

That takes care of the data format, but what about the presentation? How do you specify which
XSLT stylesheet to use to display this XML document in a Web browser? This is defined in the
second line of the XML document:

<?xml-stylesheet type="text/xsl" href="AuctionItemSummary-Base.xsl"?>

Here, I state that the AuctionItemSummary-Base.xsl stylesheet should be used. The data itself
has been chosen so that the use of XPath can be demonstrated to show specific data properties.
When no XML stylesheet document is linked to AuctionItemList.xml, then a Web browser simply
shows the XML contents and it looks like the following:

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 4 of 19

Figure 1. AuctionItemList.xml

AuctionItemSummary-Base.xsl
AuctionItemSummary-Base.xsl is the XSLT stylesheet that defines the rules used by an
XSLT processor to display AuctionItemList XML documents. It uses XPath expressions to
find information in the XML document and display it in an HTML table. I will focus in more
detail on the use of XPath in XSLT in XPath overview . Here, I describe briefly the contents of
AuctionItemSummary-Base.xsl. It defines templates that are activated when XML documents
are processed. Which template is activated depends on the XPath expression documented in
the match attribute of this template element. For example, the following snippets, taken from
AuctionItemSummary-Base.xsl, are XPath expressions:

• "/"
• "list"

#

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 5 of 19

• "item"

The information that displays when a template is activated is defined by its value-of elements'
select attributes. These attributes' values are also XPath expressions. For example:

• "description"
• "currentPrice"
• "@type"
• "@private"

In each section (Location paths , (Expressions , and (Function library), you will modify
AuctionItemSummary-Base.xsl to display the information in a different way.

By this point, you should have looked at the files in a text/XML editor. Now you can open
AuctionItemList.xml in your favorite Web browser to see the output generated by an XSLT
processor based on the stylesheet. You should see something similar to the following:

Figure 2. The base auction item table

XPath overview

What is XPath?

The XML Path Language (XPath) is a set of syntax and semantics for referring to portions of XML
documents. XPath is intended to be used by other specifications such as XSL Transformations
(XSLT) and the XML Pointer Language (XPointer). To help you understand what XPath is, I will
start by showing examples related to AuctionItemList.xml.

XPath expressions identify a set of nodes in an XML document. This set of nodes can contain
zero or more nodes. For example, the XPath expression /list, if applied to AuctionItemList.xml,
identifies one single node -- the list root element.

The XPath expression /list/item identifies all the item elements.

#
#
#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 6 of 19

XPath uses a notation with forward slashes (/) similar the UNIX shell. This is so that XPath can
be used in Uniformed Resource Identifiers (URIs), such as URLs. This is actually where XPath's
name comes from: the use of a path notation as in URLs.

Legal XPath expressions can include predicates. Predicates contain boolean expressions, which
are tested for each node in the context node-set. If true, the node is kept in the set of nodes
identified; otherwise, the node is discarded. Predicates are useful in reducing the result set. For
example, the following XPath expression identifies the second item only:

/list/item[currentPrice>1000.0]

XPath expressions can refer to attributes as well as elements in an XML document. When referring
to an attribute, the @ character is used. For example, the following XPath expression identifies
currentPrice elements whose currency attributes contain the value EUR:

/list/item/currentPrice[@currency="EUR"]

XPath also provides functions , which can come in very handy. I'll show you these in more detail
in Function library , but here is a taste of it. The XPath expression below identifies the description
element of the item whose type attribute is "IndividualOffer" (and has the value 2MP digital
camera):

/list/item[starts-with(@type,"Ind")]/description

Test the above XPath expressions in your favorite XML editor: Open AuctionItemList.xml and enter
the expressions in the XPath evaluator to see which nodes are selected.

That's it -- you've now been introduced to XPath! So far, you've learned that XPath is a language
for identifying parts of XML documents. You've seen what an XPath expression looks like and
how it refers to elements and attributes inside XML documents. I've also shown you how XPath
provides functions for manipulating data. However, this is just a quick overview; I will discuss all
these points in more detail -- as well as more aspects of XPath -- in the remaining sections. For
example, I'll examine XPath namespaces and special characters (such as // and *) and show you
that not all XPath expressions have the form shown in the examples above (called abbreviated
location paths).

XSLT, XLink, and XPointer

XSLT, XLink, and XPointer are all W3C standards. XSLT and XPath, along with XSL Formatting
Object (XSL-FO), form the W3C eXtensible Stylesheet Language (XSL) family of specifications.
(see Related topics if you want to look at these specifications.)

Presenting : XSLT uses XPath extensively for matching -- that is, testing whether a node
matches a given pattern. XSLT specifies the context used by XPath. You should understand
XPath if you want to work with XSLT. In About the example used in this tutorial , you saw that the
AuctionItemSummary-Base.xsl stylesheet contains XPath expressions. These XPath expressions
are used by XSLT to find elements that match criteria in the source document, and also to display

#
#

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 7 of 19

information in the result document. XSLT also makes use of XPath functions to perform arithmetic
or string manipulation operations.

Linking: XLink provides a generalization of the HTML hyperlink concept in XML. XLink defines
a syntax for elements to be inserted into XML documents in order to link resources together and
to describe their relationship. These links can be unidirectional, like HTML's hyperlinks, or more
complex. XLink uses XPointer to locate resources.

Pointing: XPointer is an extension to XPath that provides addressing into XML documents and
their internals. XPointer generalizes the notion of XPath nodes with the concept of XPointer
locations, points, and ranges. XPointer also specifies the context used during XPath evaluation
and provides extra functions that aren't available in XPath.

XPath is essential to the specifications mentioned above. In fact, the XPath specification explicitly
states that XPath is designed to be used by XSLT and XPointer.

Here is a recap of the XML technologies I have talked about so far:

• XML: basis for other technologies (data)
• XML Schema: data format rules
• XSLT: data presentation/matching
• XLink: linking
• XPointer and XPath: addressing

XPath terminology

What is an XPath node?

XPath sees an XML document as a tree of nodes. Nodes can be of different types, such
as element nodes or attribute nodes. Some types of nodes have names that consist of a
nullable XML namespace URI and a local part. For example, the figure below shows the XPath
representation of AuctionItemList.xml as a tree of nodes:

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 8 of 19

Figure 3. XPath's view of AuctionItemList.xml

One special type of node is the root node. An XML document contains only one such node and it
is the root of the tree, containing the whole of the XML document. Note that the root node contains
the root element as well as any processing, declaration, or comment nodes that appear before or
after the root element. In the example, the children of the root node are:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="AuctionItemSummary-Base.xsl"?>

and

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 9 of 19

<list ...>
 <item ...>
 ...
 </item>
 <item ...>
 ...
 </item>
 ...
</list>

No node type exists for XML declarations (such as <?xml version="1.0" encoding="UTF-8"?>) or
Document Type Definitions (DTDs). It is therefore not possible to refer to such entities in XPath.

Element nodes represent every element in an XML document. Attribute nodes belong to element
nodes and represent attributes in the XML document. However, attributes that start with xmlns: are
represented in XPath with namespace nodes. Other types of nodes include text nodes, processing
instruction nodes, and comment nodes.

Out of context?

XPath evaluates expressions relative to a context. This context is usually specified by the
technologies that extend XPath, such as XSLT and XPointer. An XPath context includes a context
node, context size, context position, and other context data. From a context standpoint, the
context node is of most interest here. When the context node is the root node, list/item refers
to the seven item elements in AuctionItemList.xml. When the context node is another node -- for
example, the first item element -- list/item does not refer to anything in the XML document.

In XSLT, the values of select attributes are XPath expressions. For example, in
AuctionItemSummary-Base.xsl, the xsl:apply-templates and xsl:value-of elements have select
attributes whose values (XPath expressions) are, among others, list, item, or itemId. In XSLT,
the context node is the current node being evaluated. XSLT templates can be activated several
times for an XML document and produce different results. With AuctionItemList.xml, the first and
second templates (match="/" and match ="list", respectively) are activated once, and the third
template (match="item") is activated seven times (once for each item element). The first time the
"item" template is activated, the context node is the first item element in the XML document ("Miles
Smiles album, CD") and, for example, the value of <xsl:value-of select="@id"/> is itemId0001.
The second time the XSLT template is activated, the context node is the second item element (the
"Coltrane Blue Train" CD) and the value of <xsl:value-of select="@id"/> is itemId0002. Note
that had I used /list/item/@id as opposed to @id for the select attribute, the value of the xsl-
value-of element would have been null.

Location paths

What is a location path?

Location paths are the most useful and widely used feature of XPath. A location path is a
specialization of an XPath expression (described in Expressions). A location path identifies a set
of XPath nodes relative to its context. XPath defines two syntaxes: the abbreviated syntax and the
unabbreviated syntax.

#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 10 of 19

In this tutorial, I only talk about the abbreviated syntax because it is the most widely used; the
unabbreviated syntax is also more complex. If you are interested in the unabbreviated syntax,
have a look at the XPath 1.0 specification (see Related topics).

The two types of location paths are relative and absolute.

A relative location path is a sequence of location steps separated by /. For example:

list/item[currentPrice<20.0]

This location path consists of two location steps: the first, list, selects a set of nodes relative
to the context node; the second, item[currentPrice<20.0], selects a set of nodes in the subset
identified by the first step; and so on, if there are more nodes.

An absolute location path consists of a /, optionally followed by a relative location path, with /
referring to the root node. An absolute location path is basically a relative location path evaluated
in the context of the root node, for example:

/list/item[currentPrice<20.0]

With absolute location paths (location paths that start with /), the context node isn't meaningful
because the path is always evaluated from the root node.

Useful syntax

The abbreviated syntax provides a set of useful characters (most of which you saw in XPath
overview). I will now enumerate the most commonly used characters and give examples relative
to the root node of AuctionItemList.xml -- that is, with the context node being the root node of
AuctionItemList.xml.

@ is used to refer to attributes. For example, the location path @currency identifies the currency
attribute. list/item[@private] identifies the item elements with a private attribute -- meaning, all
the item elements in AuctionItemList.xml.

* is used to refer to all the elements that are children of the context node. @* is used to refer to all
the attributes of the context node.

[] can also be used to refer to specific elements in an ordered sequence. For example, list/
item[2] refers to the second item element. This is actually a predicate (described next in
Predicates).

// is used to refer to all children of the context node. For example, //item refers to all item
elements, and //list/item refers to all item elements that have a list parent (that is, all the item
elements in the example).

. is used to refer to the context node itself. For example, . selects the context node, and .//item
refers to all the item elements that are children of the context node.

#
#

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 11 of 19

.. is used to refer to the parent of the context node. For example, ../item would refer to the first
item element in the context of the first bidIncrement element.

Predicates

Predicates are used in location paths to filter the current set of nodes. A predicate contains a
boolean expression (or an expression that can be easily converted to boolean). Each member
of the current node-set is tested against the boolean expression and kept if the expression is
true; otherwise, it is rejected. A predicate is enclosed in square brackets, []. Have a look at the
following location path:

list/item/currentPrice[@currency="EUR"]

During evaluation, all currentPrice elements in AuctionItemList.xml are in the selected node-
set. Then, the @currency="EUR" predicate is evaluated and the currentPrice elements whose
currencies do not contain the EUR value are rejected.

Predicates can also use the relational operators >, <, >=, <=, and != . They can also use boolean
operators, as you'll see in Expressions .

Lab: Location paths

Now that I have explained what location paths are, your task is to modify AuctionItemSummary-
Base.xsl to produce the following output -- specifically, a table containing only the items with
currency listed in U.S. dollars:

Figure 4. Table containing auction items in U.S. dollars

Note: You need to replace the value of the select attribute inside the list template with the
correct location path. Use single quotation marks (') inside a string enclosed in double quotation
marks ("). I will talk more about this in Expressions .

A solution to this is AuctionItemSummary-Section5.xsl. Change the second line of
AuctionItemList.xml to refer to AuctionItemSummary-Section5.xsl, and open AuctionItemList.xml in
your Web browser.

#
#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 12 of 19

Location paths are a subset of the more general XPath expressions. An expression refers not only
to a set of nodes (location paths), but can also return a boolean, a number, or a string.

Expressions

Booleans

A boolean expression can have one of two values: true or false.

XPath defines the and and or operators. With and, the left operand is evaluated first: If it is false,
the expression returns false; otherwise, the right operand is evaluated and determines the result
of the expression. With or, the left operand is evaluated and if true, the expression returns true;
otherwise, the right operand is evaluated and determines the value of the expression. As an
example, the boolean expression type="BidOnly" evaluates to true in the context of the second
item element of AuctionItemList.xml.

XPath defines the following operators:

• = means "is equal to"
• != means "is not equal to"
• < means "is less than"
• <= means "is less than or equal to"
• > means "is greater than"
• >= means "is greater than or equal to"

For example, the boolean expression bidIncrement != 10 returns true in the context of the first
item element in AuctionItemList.xml and false in the context of the second item element.

The = operator, when applied to nodes, tests whether two nodes have the same value, not whether
they are the same node. This can be used to compare attribute values. For example, item[@type =
@private] selects items whose type and private attributes have the same value.

When an XPath expression is contained in an XML document, the well-formedness rules of
XML 1.0 need to be followed, and any < or <= characters must be quoted using < and <=,
respectively. For example, the XPath expression bidIncrement < 5 is valid in XPointer but needs
to be written as bidIncrement < 5 if it is to be contained in an XSLT document.

Conversions happen when operands of a boolean expression are not of the same type (node-set,
numbers, strings). Refer to the XPath 1.0 specification for details.

Numbers

An XPath number is a double precision 64-bit floating-point number. XPath numbers include the
"Not-a-Number" NaN value, positive and negative infinity, and positive and negative zero.

Numeric operators provided by XPath are: + (addition), - (subtraction), * (multiplication), div
(division), and mod (remainder from truncating division).

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 13 of 19

Numeric operators convert operands to numbers if needed, as if they were using the number
function (described in Function library).

Note: The subtraction (-) operator has to be preceded by whitespace because XML allows "-"
characters in strings.

Here are a few examples of XPath numeric expressions:

• 7 + 3 returns 10
• 7 - 3 returns 4
• 7 * 3 returns 21
• 7 div 3 returns 2.3333333333333335
• 7 mod 3 returns 1

Note: An asterisk (*) can be interpreted as the wild card character or as the multiplier character.
XPath defines lexical rules to eliminate ambiguities (see the XPath 1.0 specification for details).
However, a new operator was introduced for the division character, div, because the forward slash
(/) is used to separate location steps.

Strings

XPath strings are a sequence of valid XML 1.0 (Unicode) characters -- for example, Miles Smiles
album, CD.

Strings in XPath are enclosed in quotation marks (' or "). When an XPath string is contained in an
XML document and contains quotation marks, you have to use one of the two following options:

• Quote them using ' or ", respectively. For example, description = 'New 256m
"USB" MP3 player'.

• Use single quotation marks (') if the expression is enclosed in double quotation marks ("),
and vice-versa. For example, 'New 356m "USB" MP3 player'.

XPath provides useful functions for dealing with strings, as described in Function library .

Lab: Expressions

Now that I have explained XPath expressions, your task is to modify AuctionItemSummary-
Base.xsl to produce the following output -- a table containing all the items whose auction finishes
within the hour:

#
#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 14 of 19

Figure 5. Table containing auctions finishing in the hour

Note:endOfAuction is the time remaining until the end of the auction, in minutes. You need to
modify the same select attribute as in Location paths .

A solution to this is AuctionItemSummary-Section6.xsl. Change the second line of
AuctionItemList.xml to refer to AuctionItemSummary-Section6.xsl, and open AuctionItemList.xml in
your Web browser.

Function library
Function Library

XPath defines a set of functions called the core function library. Each function is defined by three
artifacts:

• A function name
• A return type (mandatory, no void)
• The type of the arguments (zero or more, mandatory, or optional)

You may find functions useful inside predicates and expressions. Other specifications, such as
XSLT, extend this function set. Functions are divided into four groups, which I discuss in the rest of
this section:

• Node-set functions
• String functions
• Boolean functions
• Number functions

Node-set functions

Node-set functions provide information on a set of nodes (one or more nodes). Useful node-set
functions include:

• last() - Returns a number called the context size, which is the number of nodes in a given
context. This is different from the last node.

#

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 15 of 19

• position() - Returns a number called the context position, which is the position of the
current node in the set (list) of nodes in a given context. For example, you can test whether
you are dealing with the last node of a set with the expression position()=last().

• count(node-set) - Returns the number of nodes in the argument node-set. For example, in
the context of the AuctionItemList.xml document, count(//item) returns the number of item
elements, which is 7.

• id(object) - Returns a node-set, the result of selecting elements by their unique id declared
as type ID in a DTD. Because I don't use a DTD in AuctionItemList.xml, the result node-set is
always empty for this example. Id("ItemId0001") returns an empty node-set.

XPath also defines three other functions related to node names and namespaces:

• local-name()
• namespace-uri()
• name()

Refer to section 4.1 of the XPath 1.0 specification for details.

String functions
With string functions, you can manipulate strings. Useful string functions include:

• string() - Converts the argument object or the context node to a string. Valid arguments
are a node-set, a number, a boolean, or any other type -- but in the last case, the conversion
result is less predictable. It is recommended to use XSLT's format-number function to convert
numbers to strings, or XSLT's xsl:number element for presenting to users.

• concat() - Takes two or more strings as arguments and returns the concatenation of
them. For example, concat("Original ","recording ","Blue Train LP record") returns
"Original recording Blue Train LP record".

• starts-with() - Returns true if the first argument string starts with the second argument
string; false otherwise. For example, starts-with("Miles Smiles album, CD", "Miles")
returns true.

• contains() - Returns true if the first argument string contains the second argument string;
false otherwise. For example, contains("Miles Smiles album, CD", "album") returns true.

Other XPath string functions are substring(), substring-before(), substring-after(), string-
length(), normalize-space(), and translate(). Refer to section 4.2 of the XPath 1.0 specification
for details.

Boolean functions
Boolean functions are used to convert an object or a string to either true or false, or to get the true
or false values directly. The boolean functions are:

• boolean() - Returns the conversion to boolean of the object passed as an argument,
according to the following rules: A number is true if different from zero or NaN; a node-set or a
string are true if not empty. Other types of objects are converted in a less predictable way.

• not() - Returns true if the boolean passed as argument is false; false otherwise.

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 16 of 19

• true() and false() - Return true or false, respectively. These functions are useful because
true and false are seen as normal strings in XPath, and not the true and false values.

• lang() - Returns true if the language of the context node is the same or a sub-language of the
string argument is specified; false otherwise. The language of the context node is defined by
the value of the xml:lang attribute. For example, lang("en") returns false on any node of the
tree for AuctionItemList.xml because the xml:lang attribute is not specified.

Number functions

Number functions are XPath's numeric functions, and they all return numbers. They are:

• number() - Converts the optional object argument (or the context node if no argument is
specified) to a number, according to the following rules:

• Boolean true is converted to 1, false to 0.
• A string is converted to a meaningful number.
• A node-set is first converted to a string and then the string converted to a number.

Other types of objects are converted in a less predictable way. For example, number("250")
returns 250 and number("miles1965") returns NaN.

• sum() - Returns the sum of all nodes in the node-set argument after the number() function has
been applied to them.

• floor() - Returns the largest integer number that is not greater that the number argument.
For example, floor(2.75) returns 2.

• ceiling() - Returns the smallest integer number that is not less than the number argument.
For example, ceiling(2.75) returns 3.

• round() - Returns the integer number that is closest to the number argument. For example,
round(2.75) returns 3.

Lab: Function library

Now that I have explained XPath functions, your task is to modify AuctionItemSummary-Base.xsl
to produce the following output -- a table containing only the new auction items:

Figure 6. New auction items only

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 17 of 19

Note: Such items will contain the string New or NEW in their description. You need to modify the
same select attribute as in Location paths and Expressions .

A solution to this is AuctionItemSummary-Section7.xsl. Change the second line of
AuctionItemList.xml to refer to AuctionItemSummary-Section7.xsl and open AuctionItemList.xml in
your Web browser.

Tutorial wrap-up

XPath 2.0

XPath 2.0 is a superset of XPath 1.0 and currently a W3C Working Draft. Two W3C working
groups are working on version 2.0 of XPath: the XML Query Working Group and the XSL Working
Group. XPath 2.0 has more power and is more robust because it supports a broader set of data
types. This is because XPath 2.0 values use XML Schema types rather than simple strings,
numbers, or booleans. XPath 2.0 is backward-compatible so that 1.0 expressions behave the
same in 2.0, with exceptions listed in the specification.

See Related topics for more information on XPath 2.0.

Summary

In this tutorial, you learned that XPath is a language that's used to address parts of XML
documents. You saw how XPath relates to other XML technologies, such as XSLT and XPointer.
You saw what XPath expressions are, including the special case of expressions called location
paths. You also had an overview of the XPath function library and the new features of the
upcoming XPath 2.0.

#
#

developerWorks® ibm.com/developerWorks/

Get started with XPath Page 18 of 19

Downloadable resources

Description Name Size
Article source code XPathTutorial.zip 4KB

http://www.ibm.com/developerworks/apps/download/index.jsp?contentid=138512&filename=XPathTutorial.zip&method=http&locale=

ibm.com/developerWorks/ developerWorks®

Get started with XPath Page 19 of 19

Related topics

• Read the XML Path Language (XPath) version 1.0 Recommendation at the W3C site.
• Take a look at the XPath 2.0 specification (draft).
• Find out about new features in the upcoming XPath 2.0 in the developerWorks article "XML for

Data: What's new in XPath 2.0?" (September 2002).
• Review your XML basics with Doug Tidwell's tutorial "Introduction to XML" (developerWorks,

August 2002).
• Learn more about transforming XML documents -- read the XSL Transformations (XSLT) 1.0

specification.
• Check out the W3C XML Schema Recommendation.
• Try the XML Linking Language (XLink) to insert elements into XML documents in order to

create and describe links between resources.
• Explore the XML Pointer Language (XPointer), an extension to XPath that provides

addressing into XML documents and their internals.
• Find out how you can become an IBM Certified Developer.
• Build your next development project with IBM trial software, available for download directly

from developerWorks.

© Copyright IBM Corporation 2004
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20/
http://www.ibm.com/developerworks/xml/library/x-xdxpath2.html
http://www.ibm.com/developerworks/xml/library/x-xdxpath2.html
http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xptr/
http://www-03.ibm.com/certify/certs/index_unit_an.shtml
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX06&S_CMP=tut
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Tutorial introduction
	Should I take this tutorial?
	Prerequisites
	XML-related technologies

	About the example used in this tutorial
	Overview
	AuctionItemList.xsd
	AuctionItemList.xml
	AuctionItemSummary-Base.xsl

	XPath overview
	What is XPath?
	XSLT, XLink, and XPointer

	XPath terminology
	What is an XPath node?
	Out of context?

	Location paths
	What is a location path?
	Useful syntax
	Predicates
	Lab: Location paths

	Expressions
	Booleans
	Numbers
	Strings
	Lab: Expressions

	Function library
	Function Library
	Node-set functions
	String functions
	Boolean functions
	Number functions
	Lab: Function library

	Tutorial wrap-up
	XPath 2.0
	Summary

	Downloads
	Trademarks

