Triggers and Events

Kathleen Durant PhD

Martin Schedlbauer

Martin Schedlbauer

Triggers

* Trigger: procedure that starts automatically if specified change
occurs to the DBMS

* A trigger has three parts:

Event
Change to the database that activates the trigger

Condition

Query or test that is run when the trigger is activated

Action

Procedure that is executed when the trigger is activated and its
Condition is true (5]

Trigger Options

* Event: can be INSERT, DELETE, or UPDATE on DB table
* Condition:

Condition can be a true/false statement
All employee salaries are less than S100K
Condition can be a query

Interpreted as true if and only if answer set is not empty

* Action: can perform DB queries and updates that depend on:

Answers to query in condition part

Old and new values of tuples modified by the statement that
activated the trigger

Old.field1 or New.field1

Action can also contain data-definition commands, e.g., create new
tables

When to Fire the Trigger

* Triggers can be a row-level or a statement-level trigger
Row-level trigger: trigger executed once per modified record
Statement level trigger: executed once per activating statement

* Triggers can be executed before or after the activating SQL
statement

Consider triggers on insertions

Trigger that initializes a variable for counting how many new tuples are
inserted: execute trigger before insertion

Trigger that updates this count variable for each inserted tuple: execute
after each tuple is inserted (might need to examine values of tuple to
determine action)

Trigger can also be run in place of the action (4 J

MY SQL Trigger

CREATE TRIGGER <trigger-name> Trigger time Trigger _event
ON table_name
FOR EACH ROW
BEGIN
END
* Syntax
Trigger_time is [BEFORE | AFTER]
Trigger_event [INSERT|UPDATE | DELETE]
Other key words — OLD AND NEW

Naming convention for a trigger
trigger _time_tablename_trigger event

Found in the directory associated with the database

File tablename.tdg — maps the trigger to the correspnoding table
Triggername.trn contains the trigger definition

Trigger Example

* CREATE TRIGGER trigger_after sailor_insert
AFTER INSERT ON SAILORS
FOR EACH ROW
BEGIN
INSERT INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM New.Sailors N
WHERE New.age <= 18;

=ND; Trigger has

access to NEW

and OLD field
values

Trigger Example 2

Triggers that insert rows into the table

DELIMITER //

CREATE TRIGGER i1nvoices after_insert
AFTER INSERT ON invoices
FOR EACH ROW
BEGIN
INSERT INTO invoices audit VALUES
(NEW.vendor_id, NEW.invoice_number,
NEW. invoice total, "“INSERTED", NOWQ));
END//

CREATE TRIGGER 1nvoices after _delete
AFTER DELETE ON invoices
FOR EACH ROW
BEGIN
INSERT INTO invoices audit VALUES
(OLD.vendor_id, OLD.invoice_number,
OLD.invoice_total, "DELETED", NOWQ));
END//

Reviewing your trigger

* Go to the trigger directory and read the file (.trg)
Program Data\MySQL\MySQL5.7\data\<db-name>*.trg

* Use the DBMS to locate the trigger for you
Triggers in current schema

SHOW TRIGGERS;

ALL Triggers in DBMS using the System Catalog

SELECT * FROM Information_Schema.Triggers
WHERE Trigger _schema = 'database_name' AND
Trigger _name = 'trigger_name’;

SELECT trigger_schema, trigger_name, action_statement FROM
information_schema.triggers;

Trouble with Triggers

* Action can trigger multiple triggers

Execution of the order of the triggers is arbitrary

* Challenge: Trigger action can fire other triggers

Very difficult to reason about what exactly will happen
Trigger can fire “itself” again

Unintended effects possible

* Introducing Triggers leads you to deductive
databases

Need rule analysis tools that allow you to deduce truths about the data

MySQL limits to triggers

* Triggers not introduced until 5.0
* Not activated for foreign key actions
* No triggers on the MySQL system database

* Active triggers are not notified when the meta data of the
table is changed while it is running

* No recursive triggers

* Triggers cannot modify/alter the table that is already being
used

For example the table that triggered it

Changing your trigger

* There is no edit of a trigger

CREATE TRIGGER ...
DROP TRIGGER <TRIGGERNAME>;
CREATE TRIGGER ...

Events

* MySQL Events are tasks that run according to a schedule.
* An event performs a specific action

* This action consists of an SQL statement, which can be a
compound statement in a BEGIN END block

* An event's timing can be either one-time or reoccurring

If reoccurring, it can state an interval that determines how often
it gets run

Can specify a time window to state when the event is active

* An event is uniquely identified by its name and the schema to
which it is assigned

* An event is executed with the privileges of its definer/author

* Errors and warnings from an event are written to the log

Events

CREATE EVENT "event_name’
ON SCHEDULE schedule
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE] -- CLUSTERdb
DO BEGIN
. -- event body
END

DROP EVENT ‘event_name’
ALTER EVENT ‘event_name’

Options for a Schedule

Run once on a specific date/time:

AT ‘YYYY-MM-DD HH:MM.SS’
e.g. AT 2011-06-01 02:00.00’

Run once after a specific period has elapsed:

AT CURRENT_TIMESTAMP + INTERVAL n
[HOUR|MONTH | WEEK | DAY | MINUTE]
e.g. AT CURRENT TIMESTAMP + INTERVAL 1 DAY

Run at specific intervals forever:

EVERY n [HOUR|MONTH | WEEK | DAY | MINUTE]
e.g. EVERY 1 DAY

Run at specific intervals during a specific period:
EVERY n [HOUR|MONTH | WEEK | DAY | MINUTE] STARTS date
ENDS date
e.g. EVERY 1 DAY STARTS CURRENT_TIMESTAMP + INTERVAL 1

. WEEK ENDS ‘2017-01-01 00:00.00

Event example 1

DELIMITER $$%

CREATE EVENT " archive_blogs"

ON SCHEDULE EVERY 1 WEEK STARTS '2015-07-24 03:00:00'

DO BEGIN -- copy deleted posts

INSERT INTO blog archive (id, title, content)
SELECT id, title, content FROM blog WHERE deleted
-- copy associated audit records

INSERT INTO audit_archive (id, blog _id, changetype,
SELECT audit.id, audit.blog id, audit.changetype,

FROM audit JOIN blog ON audit.blog id = blog.id
-- remove deleted blogs and audit entries
DELETE FROM blog WHERE deleted = 1;

END $$

-- reset the delimiter
DELIMITER ;

=1;

changetime)
audit.changetime
WHERE blog.deleted = 1;

Event example 2

A statement that creates a one-time event
DELIMITER //

CREATE EVENT one_time _delete audit rows
ON SCHEDULE AT NOW() + INTERVAL 1 MONTH
DO BEGIN
DELETE FROM i1nvoices _audit
WHERE action_date < NOW() - INTERVAL 1 MONTH;
END//

Event Example 3

A statement that creates a recurring event

CREATE EVENT monthly delete_audit_rows
ON SCHEDULE EVERY 1 MONTH
STARTS "2015-06-01-
DO BEGIN
DELETE FROM invoices _audit

WHERE action_date < NOW() - INTERVAL 1 MONTH;
END//

Managing events

A statement that disables an event
ALTER EVENT monthly delete audit rows DISABLE

A statement that enables an event
ALTER EVENT monthly delete audit rows ENABLE

A statement that renames an event

ALTER EVENT one_time _delete audit rows
RENAME TO one_time_delete audits

A statement that drops an event
DROP EVENT monthly delete audit _rows

A statement that drops an event only if it exists
DROP EVENT IF EXISTS monthly delete_audit _rows

Prepared statements

* Can create a SQL statement where certain values within the
guery are parameterized

Parameters can be table names, field names, literal values

* Can protect the database against SQL injection
Since the structure of the query is defined via the statement
Not just free form SQL code

* Less overhead for parsing the statement each time it is
executed

» Statement is set up (known to the server)
Change the input values to the statement

* The scope of a prepared statement is the session within which
it is created

Preparing SQL statement

* Use PREPARE to prepare a SQL statement
SYNTAX: PREPARE statementname from SQLStatement
Defines a name from the SQLStatement

Within SQLStatement, ? characters denote parameter markers to
indicate where data values are to be bound to within the query
when it is executed

* Use EXECUTE to execute the command
SYNTAX: EXECUTE SQLStatement [USING
@var_name [, @var_name] ...]

Parameter values can be supplied only by user variables, and the
USING clause must name exactly as many variables as the
number of parameter markers in the statement
* Use DEALLOCATE to free resources associated with the
statement

Prepared Statement Example

USE scratch; -- using the scratch database

SET @a :="a";
SET @b := "test";
SET @c :=1;

SET @s := CONCAT (“SELECT ", @a, " FROM ", @b,
“WHERE a >", @c);

PREPARE stmt FROM @s;

EXECUTE stmt; -- can be executed with different values

SET @c :=-1;

EXECUTE stmt;

DEALLOCATE PREPARE stmt;

Summary

* Triggers respond to changes in the database
Allows you to define constraints on the data

* Events allow you to schedule tasks to be done by
a calendar date or an interval

* Prepared statement allows you to specify the
structure of a SQL statement and change literal
values passed to the statement.

	Triggers and Events
	Triggers
	Trigger Options
	When to Fire the Trigger
	MY SQL Trigger
	Trigger Example
	Trigger Example 2
	Reviewing your trigger
	Trouble with Triggers
	MySQL limits to triggers
	Changing your trigger
	Events
	Events
	Options for a Schedule
	Event example 1
	Event example 2
	Event Example 3
	Managing events
	Prepared statements
	Preparing SQL statement
	Prepared Statement Example
	Summary

