
Triggers and Events
Kathleen Durant PhD
CS 3200

1

Martin Schedlbauer

Martin Schedlbauer

Triggers
• Trigger: procedure that starts automatically if specified change

occurs to the DBMS

• A trigger has three parts:

• Event
• Change to the database that activates the trigger

• Condition
• Query or test that is run when the trigger is activated

• Action
• Procedure that is executed when the trigger is activated and its

Condition is true
2

Trigger Options
• Event: can be INSERT, DELETE, or UPDATE on DB table

• Condition:
• Condition can be a true/false statement

• All employee salaries are less than $100K
• Condition can be a query

• Interpreted as true if and only if answer set is not empty

• Action: can perform DB queries and updates that depend on:
• Answers to query in condition part
• Old and new values of tuples modified by the statement that

activated the trigger
• Old.field1 or New.field1

• Action can also contain data-definition commands, e.g., create new
tables

3

When to Fire the Trigger
• Triggers can be a row-level or a statement-level trigger

• Row-level trigger: trigger executed once per modified record
• Statement level trigger: executed once per activating statement

• Triggers can be executed before or after the activating SQL
statement
• Consider triggers on insertions

• Trigger that initializes a variable for counting how many new tuples are
inserted: execute trigger before insertion

• Trigger that updates this count variable for each inserted tuple: execute
after each tuple is inserted (might need to examine values of tuple to
determine action)

• Trigger can also be run in place of the action 4

MY SQL Trigger
CREATE TRIGGER <trigger-name> Trigger_time Trigger_event
ON table_name

FOR EACH ROW
BEGIN
END

• Syntax
• Trigger_time is [BEFORE | AFTER]
• Trigger_event [INSERT|UPDATE|DELETE]
• Other key words – OLD AND NEW
• Naming convention for a trigger

trigger_time_tablename_trigger_event
• Found in the directory associated with the database

• File tablename.tdg – maps the trigger to the correspnoding table
• Triggername.trn contains the trigger definition

Trigger Example
• CREATE TRIGGER trigger_after_sailor_insert

AFTER INSERT ON SAILORS
FOR EACH ROW

BEGIN
INSERT INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating

FROM New.Sailors N
WHERE New.age <= 18;

END; Trigger has
access to NEW
and OLD field
values

6

Trigger Example 2

7

Triggers that insert rows into the table

DELIMITER //

CREATE TRIGGER invoices_after_insert
 AFTER INSERT ON invoices
 FOR EACH ROW
BEGIN
 INSERT INTO invoices_audit VALUES
 (NEW.vendor_id, NEW.invoice_number,
 NEW.invoice_total, 'INSERTED', NOW());
END//

CREATE TRIGGER invoices_after_delete
 AFTER DELETE ON invoices
 FOR EACH ROW
BEGIN
 INSERT INTO invoices_audit VALUES
 (OLD.vendor_id, OLD.invoice_number,
 OLD.invoice_total, 'DELETED', NOW());
END//

Reviewing your trigger
• Go to the trigger directory and read the file (.trg)

Program Data\MySQL\MySQL5.7\data\<db-name>*.trg

• Use the DBMS to locate the trigger for you
Triggers in current schema

SHOW TRIGGERS;

ALL Triggers in DBMS using the System Catalog
SELECT * FROM Information_Schema.Triggers
WHERE Trigger_schema = 'database_name' AND

Trigger_name = 'trigger_name';

SELECT trigger_schema, trigger_name, action_statement FROM
information_schema.triggers;

Trouble with Triggers
• Action can trigger multiple triggers

• Execution of the order of the triggers is arbitrary

• Challenge: Trigger action can fire other triggers
• Very difficult to reason about what exactly will happen

• Trigger can fire “itself” again
• Unintended effects possible

• Introducing Triggers leads you to deductive
databases
• Need rule analysis tools that allow you to deduce truths about the data

9

MySQL limits to triggers
• Triggers not introduced until 5.0
• Not activated for foreign key actions
• No triggers on the MySQL system database
• Active triggers are not notified when the meta data of the

table is changed while it is running
• No recursive triggers
• Triggers cannot modify/alter the table that is already being

used
• For example the table that triggered it

10

Changing your trigger
• There is no edit of a trigger

• CREATE TRIGGER …
• DROP TRIGGER <TRIGGERNAME>;
• CREATE TRIGGER …

Events
• MySQL Events are tasks that run according to a schedule.
• An event performs a specific action
• This action consists of an SQL statement, which can be a

compound statement in a BEGIN END block
• An event's timing can be either one-time or reoccurring

• If reoccurring, it can state an interval that determines how often
it gets run

• Can specify a time window to state when the event is active
• An event is uniquely identified by its name and the schema to

which it is assigned
• An event is executed with the privileges of its definer/author
• Errors and warnings from an event are written to the log

Events
• CREATE EVENT `event_name`

ON SCHEDULE schedule
[ON COMPLETION [NOT] PRESERVE]
[ENABLE | DISABLE | DISABLE ON SLAVE] -- CLUSTERdb

• DO BEGIN
• -- event body
• END

• DROP EVENT `event_name`
• ALTER EVENT `event_name`

Options for a Schedule
• Run once on a specific date/time:

AT ‘YYYY-MM-DD HH:MM.SS’
e.g. AT ‘2011-06-01 02:00.00′

• Run once after a specific period has elapsed:
AT CURRENT_TIMESTAMP + INTERVAL n

[HOUR|MONTH|WEEK|DAY|MINUTE]
e.g. AT CURRENT_TIMESTAMP + INTERVAL 1 DAY

• Run at specific intervals forever:
EVERY n [HOUR|MONTH|WEEK|DAY|MINUTE]

e.g. EVERY 1 DAY
• Run at specific intervals during a specific period:

EVERY n [HOUR|MONTH|WEEK|DAY|MINUTE] STARTS date
ENDS date

e.g. EVERY 1 DAY STARTS CURRENT_TIMESTAMP + INTERVAL 1
• WEEK ENDS ‘2017-01-01 00:00.00′

Event example 1

15

DELIMITER $$

CREATE EVENT `archive_blogs`
ON SCHEDULE EVERY 1 WEEK STARTS '2015-07-24 03:00:00'

DO BEGIN -- copy deleted posts

INSERT INTO blog_archive (id, title, content)
SELECT id, title, content FROM blog WHERE deleted = 1;
-- copy associated audit records

INSERT INTO audit_archive (id, blog_id, changetype, changetime)
SELECT audit.id, audit.blog_id, audit.changetype, audit.changetime

FROM audit JOIN blog ON audit.blog_id = blog.id WHERE blog.deleted = 1;
-- remove deleted blogs and audit entries

DELETE FROM blog WHERE deleted = 1;

END $$

-- reset the delimiter
DELIMITER ;

Event example 2

16

A statement that creates a one-time event
DELIMITER //

CREATE EVENT one_time_delete_audit_rows
ON SCHEDULE AT NOW() + INTERVAL 1 MONTH
DO BEGIN
 DELETE FROM invoices_audit
 WHERE action_date < NOW() - INTERVAL 1 MONTH;
END//

Event Example 3

17

A statement that creates a recurring event
CREATE EVENT monthly_delete_audit_rows
ON SCHEDULE EVERY 1 MONTH
STARTS '2015-06-01'
DO BEGIN
 DELETE FROM invoices_audit
 WHERE action_date < NOW() - INTERVAL 1 MONTH;
END//

Managing events

18

A statement that disables an event
ALTER EVENT monthly_delete_audit_rows DISABLE

A statement that enables an event
ALTER EVENT monthly_delete_audit_rows ENABLE

A statement that renames an event
ALTER EVENT one_time_delete_audit_rows
 RENAME TO one_time_delete_audits

A statement that drops an event
DROP EVENT monthly_delete_audit_rows

A statement that drops an event only if it exists
DROP EVENT IF EXISTS monthly_delete_audit_rows

Prepared statements
• Can create a SQL statement where certain values within the

query are parameterized
• Parameters can be table names, field names, literal values

• Can protect the database against SQL injection
• Since the structure of the query is defined via the statement
• Not just free form SQL code

• Less overhead for parsing the statement each time it is
executed

• Statement is set up (known to the server)
• Change the input values to the statement

• The scope of a prepared statement is the session within which
it is created 19

Preparing SQL statement
• Use PREPARE to prepare a SQL statement

• SYNTAX: PREPARE statementname from SQLStatement
• Defines a name from the SQLStatement
• Within SQLStatement, ? characters denote parameter markers to

indicate where data values are to be bound to within the query
when it is executed

• Use EXECUTE to execute the command
• SYNTAX: EXECUTE SQLStatement [USING

@var_name [, @var_name] ...]
• Parameter values can be supplied only by user variables, and the

USING clause must name exactly as many variables as the
number of parameter markers in the statement

• Use DEALLOCATE to free resources associated with the
statement 20

Prepared Statement Example
USE scratch; -- using the scratch database
SET @a := "a";
SET @b := "test";
SET @c := 1;
SET @s := CONCAT (“SELECT ", @a, " FROM ", @b,

“WHERE a > " , @c);
PREPARE stmt FROM @s;
EXECUTE stmt; -- can be executed with different values
SET @c := -1;
EXECUTE stmt;
DEALLOCATE PREPARE stmt; 21

Summary
• Triggers respond to changes in the database

• Allows you to define constraints on the data
• Events allow you to schedule tasks to be done by

a calendar date or an interval
• Prepared statement allows you to specify the

structure of a SQL statement and change literal
values passed to the statement.

22

	Triggers and Events
	Triggers
	Trigger Options
	When to Fire the Trigger
	MY SQL Trigger
	Trigger Example
	Trigger Example 2
	Reviewing your trigger
	Trouble with Triggers
	MySQL limits to triggers
	Changing your trigger
	Events
	Events
	Options for a Schedule
	Event example 1
	Event example 2
	Event Example 3
	Managing events
	Prepared statements
	Preparing SQL statement
	Prepared Statement Example
	Summary

